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The research of irregular parquet forming convex pentagons for constructing 
monoendric geometrical networks is a special case in the infinite area of networks. 

Unlike regular hexagons, regular pentagons do not form monoendric net-
works, yet irregular pentagons neatly compensate for this shortage by delivering 
15 parquet pattern types (Figure 1).

As any triangle and tetragon are parquet forming (diagonally or translation-
ally), and the last parquet convex polygon, in many forms of it, is the hexagon, so 
our attention is naturally turned towards pentagons and hexagons.

As a plastic phenomenon, the pentagon, due to its smaller number of sides 
and angles, bears a more typical and categorical form as compared to the more 
“worn out” hexagon. The problem of “wearing out” becomes clearer if we’d look at 
irregular polygons with larger number of sides. 

This is even obvious with regular polygons, which, at number of the sides n = 
∞, to wear out a circle. This explains our preference for pentagons in parquet form-
ing modules. There is no question about their parqueting possibilities.

The problem of constructing the networks that reduce to surface ornament 
is in fact as old as art itself. The palace of Alhambra (XII – XIV century), which in-
spired Escher, is one of the peaks of a long development. Much later in the XVII 
century, the first attempt at mathematical analysis of geometrical networks by Ke-
pler (1571–1630) – Harmonice Mondi (1619) emerged, but this work was overshad-
owed by his astronomical discoveries.

And so it was, till the end of the XIX century.
Even newer for the science is the problem of parquet forming pentagons. It 

emerged in 1918 when Reinhardt discovered the three types of parquet forming 
hexagons and the five types of pentagons. Quite later in the ‚Mathematical Games‘ 
column of the Scientific American Magazine, Martin Gardner attracted the atten-
tion of Kerschner, who discovered three more types, and of James, who gifted the 
world with his magnificent network (IX). Gardner’s circle was also joined by Doris 
Schattschneider who summarized the experience of her predecessors, and by Mar-
jory Rice.  

Based on an analysis of the already existing parquet forming pentagons, Rice 
created a system of her own for visual information, revealing the different types of 
knots in a network, as follows:

l – link of two angles = 180º;
Λ – link of 3 angles = 360º;
Υ – link of 3 angles (one is repeated) = 360º;
X – link of 4 angles (one is repeated) = 360º;
L – right angle repeated = 180º.
Yet the most important here is her formula: All angles of an infinite net-

work generating pentagon must present at all its knots in an equal number. 
Based on what this number was, she divided the possible networks into degrees –  
1st, 2nd,…, Nth. With combinations of the different knots following the above formu-
la tables were composed of possible parquet forming pentagons (with the relevant 
modelling of their sides).
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Figure 1: The 15 revealed so far parquet forming types of convex irregular pentagons
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So the search for parquet pentagons was no longer accidental or the result of 
some ingenious idea (James), but a patient research after a determined program. 
Thus, in the first degree (where each angle is presented once), fall networks I and 
II. Network I poses no requirements for the sides, but Network II does (Figure 2).

All other networks, excluding III, V and IX, fall in the table of second degree, 
and there are 10 possible groups, as follows:

	 Λ Λ l l	 Λ Λ L L	 Λ Λ l L	 Λ Υ l l	 Υ Υ l l
	 Υ Υ l L	 Υ Υ L L	 Λ Λ X	 Λ Υ X	 Υ Υ X

Figure 2

Figure 3

Each of these groups divides into different 
numbers of subgroups. For example, group YYll 
gives twelve subgroups, and group ΛΛLL – only 
two. (Figure 3).

Marjory Rice composed tables, including 
all subgroups of these groups, forming the sec-
ond degree, and consecutively checked each 
pattern from the subgroup to see if and how it 
forms parquet. By methodically excavating the 
multiple layers of possibility, new patterns were 
revealed, parquet X of the YYX group. A bit later, 
using the same methodical approach, plus the 
impulses received after she studied the theory 
of Branko Gruenbaum and Jeffrey Shepherd on 
block parquet forming, Marjory Rice discovered 
also networks XI and XII – both in one subgroup 
of the YYlL group, and finally – network XIII from 
the YYLL group.

With this, it seemed that actually all the 
thirteen types of parquet forming pentagons 
have been discovered. At least so stated math-
ematicians Hirshhorn and Hant (Mathematical 
Magazine, 1978). Here, it should be pointed out 
though, that network VI is a bimorph one. With 
this, the problem with the number of parquet 
forming types seemed to be settled, yet it was 
once again opened in 1985 after Roll Stein dis-
covered type XIV…And again in 2015 professor 
Mann from the Washington University discovers 
type XV./It should be noted that the above type 
as well as type XIV have fixed angles and sides./
So the problem of searching for new parqueting 
type still remains open. Those types should be 
searched for within the framework given by Rice 
and her formula. 
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TABLE 1.  THE POSSIBILITY FOR NEW PARQUETING TYPES

II  DEGREE

III  DEGREE

Unique

Unique
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Here in the two ​degree​s ​and in the part of ​three degree​s​,​ ​w​here the strings of ​
two angles form 180 degrees​,​ the question is over.​ ​The complexity​ ​of the parquet-
ing modul​e​s here​,​ come to the ​Type 2. But for the variants of № XV and those with 
the knots formed​ ​from ​three equal angles​ ​+1 different, the possibility of forming ne​
w types is possible. Th​ere are 36 numbers ​that ne​ed to be​ ​examined. ​Other possible 
tilings are probably here.​ ​The TABLE 1 is the ​algorithm for that.

Rice’s research gives chance for discoveries connected to the creation of net-
works of hybrid pentagons, i.e. those belonging to more than one of the thirteen 
types and having specific networks of their own, apart from their corresponding 
ones. Thus, the general list of networks including the thirteen types, total to 58 
(according to a letter from Rice to Schattschneider), which is to say the number of 
hybrid networks is 45. What’s more, this only applies for networks from the first and 
second degree, plus networks III, V, and IX.

Indeed, Rice also started researching pentagons of the third degree, but she 

Figure 4

Figure 5

Figure 6

was not very optimistic and probably did not 
share the results with Schattschneider. Why? It’s 
clear that to a large extent, the problem of hybrid 
forms remained a side-issue to her, and second, 
she had obviously ran into some contradictions 
with her own formula, which she was unable to 
overcome.

With the first degree pentagons there are 
no such contradictions. But at the second de-
gree some double connections emerge that are 
somewhat confusing. This applies more impor-
tantly for the higher degrees. 

The network of eight-piece module shown 
on Figure 4 features seven different knots. Al-
though it forms a network, at first sight it does 
not satisfy Rice’s formula, i.e. the angles do not 
appear in the same numbers in all knots of the 
network. For a long time, finding such networks 
had been classified in the research, initially, as 
exceptions to Rice’s formula.  With their number 
growing, Rice‘s formula lost its sense. Incredibly, 
this seemed to enhance the area of possible net-
works.

Yet everything returned to the proper 
framework with the discovery that by introduc-
ing double, triple, and so on links makes possible 
the restoration of angles numbers equality (Fig-
ure 5). In case this remains impossible, parquet 
forming is impossible too, (Figure 6), and here a 
new AC connection is needed.
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Examining pentagons of higher degrees, even if not delivering a new parquet 
forming type, is absolutely necessary while searching for hybrid networks, which 
are as important for artists, designers, and architects, as the fifteen basic networks. 

This study brought the following results:
	 First degree – 64 networks;
	 Second degree – 98 networks;
	 Third degree – 62 networks;
	 Fourth degree – 49 networks;
	 Fifth degree – 9 networks;
	 Sixth degree – 16 networks;
	 Eighth degree – 1 network;
	 Tenth degree – 1 network;
	 Total – 300 networks.
It’s easy to notice that Rice’s results not only lack networks of above the sec-

ond degree, but also these of the first and second degree are, accordingly, 2 and 
53, equals 55, while in this current research the number is 64 + 95 = 159, i.e. in this 
case the search delivers three times higher result. /I realized from my correspond-
ence with Schattschneider that Marjory Rice had 
sent her other networks which are unfortunately 
not published so far./

This might be explained by both obvious 
lapses in Rice’s table, and her insufficient re-
searches on parquet forms. The high results re-
ceived in this current study are due to the pro-
found analysis of parquet-forming creating op-
portunities, as well as to improve the technolo-
gies of combination. 

In general, all networks are unchangeable 
or changeable.

In the case of changeable networks, some 
of the elements of the parquet-forming module 
may be repeated, tripled, etc., as the network ac-
quires a new graphic expression without modifi-
cations to the parquet-forming pentagon and its 
knots. Now it arrives at a new network with the 
same data and of the same degree (Figure 7). 

In other networks, typical with unbroken 
parallel lines in their compositional structure, 
sliding of the belts between these lines is pos-
sible, and even in different scales within one and 
the same network. These are again other net-
works, but with the same parameters (Figure 8). 

In the third case, the inversion combina-
tion of the module forms a new module with 

Figure 7

Figure 8
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doubled number of the pieces, but with the 
same parameters. Such is the case of networks 
VII,VIII,X,XI,XII,XIII and VI the biomorph charac-
teristics of which Rice overlooked. (Figure 9).

Fourth case – we should point out that in 
network I, two distinct forms of its deserving dif-
ferentiation, have not been counted: network 
“O”, where the two parallel sides of the penta-
gon are equal, and network I2, where the pen-
tagon has two pairs of parallel sides. These two 
types, and especially the latter, are distinctive for 
their architectonic features. The I2 network also 
gives a combination of two hexagons, and the 
“O” type – sliding networks (Figure 10).

Fifth case. Totally unexplored remain the 
three types of rosettes of first and third degree 
– accordingly, of diagonal and biaxial equilat-
eral hexagons, and parquet-forming mirror bi-
nomials, as well as their variations: solid, with 
central opening, and correspondingly, open or 
closed. The first “rosette” of Rice is actually just 
a diendric axial construction. Schattschneider 
mentions a group of Australian students who, 

Figure 9

Figure 10

Figure 12

Figure 11
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under Hirshhorn’s lead, discovered two rosettes 
of equilateral unpaired pentagons and the pen-
tagon of Hash (Figure 11), but these were not 
infinite. (Later on it was proved that Hirshhorn’s 
rosette might be continued to infiniteness in 
four variants.) To these we may add the rosette of 
Zuka, and the wonderful polycentric rosette of 
Rice, but these are rosettes of unique pentagons. 
Which is to say, that the infinite model rosettes, 
which are extremely important for mastering 
centric oriented spaces, remained unknown 
(Figure 12).

In fact, our entering the higher degrees of 
networks was a result not of preliminarily com-
posed tables, but of researching changeable net-
works. The major part of them when changed, 
pass into another degree, receiving new knots. 
Of particular interest are those networks which 
change in two directions and pass through dif-
ferent networks (Figure 13). 

Thus, through modification of a new net-
work we determine the parquet-forming group 
and hence discover, by using Rice’s “hieroglyphs” 
we can outline all members of the subgroup. 
Another method for discovering high-degree 
parquet-forming modules is through upgrad-
ing low-degree parquet-forming or non-forming 
ones (Figure 14). As already stated, networks III, V, 
and IX are also high-degree ones – III and IX – of 
third degree, and V – of sixth. (Marjory Rice had 
irregularly placed all the three in third degree.) 
Besides, network III (which, in fact, is an detailed 
drafted network of regular hexagons) is not only 
bimorph (formed through simple translation or 
mirror binomial translation (Figure 15)), but at 
the translation of inversion or diagonal binomi-

Figure 13

Figure 14

Figure 15
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als, it gives a new network type. So, the bimorph network III and its two related 
polymorph networks provide endless possibilities for form-building in the range 
from the third to sixth (and to 11) degree. 

Figure 16

Figure 17

Figure 18

Figure 19
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Figure 20

Special attention is paid to the networks featuring a knot of three equal an-
gles (of 120º), whose signature we add to Rice’s hieroglyphs –     (Figure 17).

We also add the following signatures: 
 	– 6 equal angles of 60º; 
 	– 3 equal angles of 60º; 

  	 – 3 equal angles + 1 = 360º.
Also it should be pointed out that James’ network, which is  in fact unchange-

able, and has two graphic analogues (Figure 18).
Another occurrence that draws attention is the so-called “artistic games”, al-

lowing greater freedom for creative searching. These are not only possible in net-
work III and the sliding networks, but also in the networks forming biaxial hexa-
gons (Figure 19), as well as in more complicated symmetrical configurations. Such 
“games” are, of course, possible in each and any network. Given a parquet-forming 
module (even in the case of parquet-forming binomials) (Figure 20) is never un-
equivocal, which module type shall be accented and determined basic, depends 
on the concrete composition demands only. It could even reach to illusionary pres-
entation of monoendric networks as polyendric. 

All these networks allow transformations while retaining their monoendric-
ity (Escher), or deformations turning them into a plastic material in the hands of an 
artist (Vasarely).

And another peculiarity: low-degree networks are usually networks of types, 
i.e. pentagons in any corresponding parquet-forming module might be endlessly 
modified according to the requirements of their subgroups. These are relatively 
simple constructions with countless possibilities for changes. Besides, they may 
be subject to the above mentioned modifications within or outside the sub-type 
frames. The high-degree networks, which, as possible combinations of 3, 4, 5, 6, 
etc. knots are far more than the low-degree ones, and in fact decrease in numbers 
with the growing of the degree and become unique and unchangeable. They are 
complex, but fixed constructions.

But if the networks’ degree is mathematically infinite, then which is the actual 
last degree? A profound analysis reached to the network of binomials in regular 
hexagons, which in fact exhausts its possible variations in the ninth degree with 
eleven knots (Figure 21). 

Figure 21
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The methodical and profound research on 
all possible groups that was completed for the 
second and partially for the third degree is not 
necessary for the higher degrees, as they are 
mostly developments or combinations of mod-
ules from the lower degrees. In this regard this 
research is complete and comprehensive and 
covers this theme (with some possible lapses al-
lowed). Fortunately, in the hands of an artist it 
is inexhaustible, and not only regarding ceramic 
floorings or the directions of Escher and Vasarely, 
but most of all in the opportunities of each net-
work for “artistic games”. 

Yet the artistic embrace of the mathemati-
cal problem would not be impossible without 
the contributions of Marjory Rice (the rule on 
networks, the graphic information, and numera-
tion). 

The improvement of the technique of com-
bining, though, comes from knowing the laws of 
symmetry (mirror, diagonal, inverse, and transla-
tional), and the criterion of Conway on the par-
quet forming ability:

“A figure gets realized as a prototype for 
monoendric network if it‘s outlines might get 
decomposed into six parts, two of which are 
equal and parallel, and four – in diagonal sym-
metry.” (Straight lines are included here.)

Although it was known that the pentagon 
of Hash parquets limitedly and not infinitely, one 
of its combinations was found to fully meet the 
above criterion, but is still not forming parquet 
(Figure 22). At this exception the two equal and 
parallel sides are adjacent to one diagonal side. 
Hence, at decomposing into six parts this should 
be avoided and this is the new requirement. And 
what happens when the figure is decomposed 
into three, four or five parts? With three parts 
(derivative of a scalene triangle) neither equality 
nor parallelism of sides is required (as the latter 
is impossible), but only their diagonal symmetry. 
With four parts (scalene quadrangle) the require-
ments are the same (with possible parallelism of 
the sides). Conway’s criterion is only precise for 

Figure 22

Figure 24

Figure 23
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decomposing into five parts. Thus cleared, this criterion allows quick and faultless 
determination of the parquet forming shapes. Similar binomial uhich is a not par-
queting modul is at Figure 23.

It is natural for all artists (and especially for designers) to emphasise the im-
portance of those pentagons characteristic for their high polymorphism. For this 
purpose, research and tables have been made, revealing the parquet-forming ca-
pacities of all the 300 networks, with the undisputed top being the pentagon (Fig-
ure 24) delivering over 50 networks.

And finally, we will make a summary: parquet-forming irregular pentagons 
cover infinite planes in two manners, as follow:

A – through development along two rectilinear directions; 
B – through rotation of the parquet forming module around one centre.
For the first case, among the many wonderful networks we shall point out to 

the sliding of type “O”, and for the second – the rosettes of first and third degree. 
Both cases take us directly on a concrete architectural environment – pave-

ments and panorama alleys (Sidewalks “1”, “2”, and “3”), as well as in centric-oriented 
interior and exterior spaces (Rosettes A, Rosettes B, Tableau “1”).

All the other networks, and especially these of I2, may be integrated or em-
ployed with endless variety in the free urban and park spaces. 

Besides, to the richness of the practical capacities of irregular convex penta-
gons we will add the already mentioned “artistic games”, where the activated visu-
alisation of the different types of parquet-forming modules in one and the same 
network, or parts of them, or of more complex formations, brings forward an end-
less and surprising diversity. 

In the hands of an artist, through the insertion of different  colour, texture, 
and material, pentagons, geometrical networks turn into subjects of genuine com-
positional adventure.

Such richness could be an adequate contemporary transcription of such a 
classical masterpiece as Il Mare – the floor mosaic of the San Marco Basilica in Ven-
ice.

We do hope that the monoendric infinite networks of irregular pentagons 
will see a wide application and enhance the limited capacities of rectangular plates.
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